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Abstract - The speed and quality of the Internet links 

available today have made it possible to employ them as 

broadcast contribution links.  However, Internet links 

experience packet loss.  The protocols that deal with this 

loss represent a tradeoff between latency and reliability.  

This paper investigates two common packet loss recovery 

protocols: Selective Retransmission (also known as ARQ) 

and SMPTE-2022 FEC.  We start with a statistical 

modeling analysis of these two protocols. Next, using an 

actual encoder/decoder pair, we present a few lab 

measurement results using a network simulator specifically 

designed for this test, as well as results from an Internet link 

between locations in California and Illinois.  We conclude 

with guidelines for broadcasters who are considering the 

Internet as a low-cost contribution link, but are concerned 

with latency and reliability.  At the time of this writing, the 

Video Services Forum (VSF) has started a working group 

called RIST (Reliable Internet Stream Transport) 

specifically to standardize such a protocol. 

INTRODUCTION 

The speed and reliability of the Internet has steadily 

increased over the last few years.  Over-The-Top (OTT) 

services are routinely used by millions to watch high-quality 

content.  It is natural for broadcasters to consider using the 

Internet as a cost-effective means to transmit contribution-

grade video between locations, rather than purchasing 

expensive dedicated links.  Studios and TV stations all have 

Internet access already, so why not use that for contribution 

as well? 

The issue with this approach is that Internet delivery is 

best-effort (since IP is best-effort), and one cannot set end-

to-end priorities. Thus, there will be occasional packet 

losses, primarily due to instantaneous congestion.  Since 

what is being transmitted is compressed audio/video, effects 

of uncorrected packet loss are quite noticeable. 

Transport protocols such as TCP can deal with packet 

loss and provide reliable delivery.  However, there is a 

fundamental tradeoff between reliable delivery and latency.  

Given enough time, a well-designed protocol can get every 

packet delivered.  OTT applications, for instance, use HLS 

[1] or DASH [2] for delivery; these protocols may impose a 

latency in the order of tens of seconds.  For stored content, 

this is acceptable; it is better to have reliable delivery than 

low latency.  However, for many broadcast applications, 

latency needs to be low, and the protocol may need to “give 

up” on packets that cannot be recovered in a given window 

of time. 

To date, the only standard protocol that satisfies this 

latency requirement while providing some packet loss 

recovery is SMPTE-2022 FEC [3] [4].  This protocol was 

not designed to be used on the Internet; its primary purpose 

was to recover from occasional packet loss on well-

managed links. However, due to the lack of options and the 

quality improvements on Internet links, a number of 

broadcasters have used SMPTE-2022 FEC with some 

degree of success.  However, in general, something better is 

required. 

There are a number of proprietary solutions in the 

market today that use variants of the well-known Selective 

Retransmission technique.  These solutions are usually 

denoted by ARQ (Automatic Repeat reQuest), described in 

many networking textbooks [5].  The ARQ technique is 

known to work significantly better than SMPTE-2022 FEC. 

In this paper, we provide a comparison between 

SMPTE-2022 FEC and one standards-based implementation 

of ARQ, with the objective of providing low-latency 

transport over the Internet.  The comparison includes a 

statistical analysis, a lab test with a custom network 

simulator, and one actual test over the Internet. 

ACCEPTABLE PACKET LOSS 

Even with the advances in the capacity and reliability of the 

Internet links, they are not yet fast enough to support raw 

video transmission in an economical way.  Therefore, 

compression is needed, and the better job the compression 

does, the more important the resulting bits become, since 

the amount of information they contain is higher. In other 

words, all the bits are important, and they must be delivered 

with high reliability.  Given that packet loss is unavoidable 

if there is a latency constraint, it is important to determine 

what an acceptable level of packet loss is. 

A simple way to determine the acceptable packet loss is 

to assume that every packet loss causes a glitch [6].  This is 



a reasonable assumption with compressed streams because 

fundamentally, compression works by removing the 

redundancy, and thus every bit is important.  In addition, the 

effects of a loss may persist for a while, since decoding a 

video frame may depend on data from previous video 

frames.  In reality, a small fraction of the losses may not be 

noticeable or may be concealed by the decoder, but the 

more conservative approach is to assume that every loss is a 

noticeable glitch. 

Based on this approach, it is straightforward to derive 

the glitch interval from the data rate and the packet size.  

Defining: 

R: stream rate in bits/second 

B: packet payload size in bytes 

p: packet loss probability 

G: glitch interval in seconds 

The glitch interval is given by (1): 
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As an example, let us assume a 4 Mb/s video stream, 

with the usual 1316-byte payload.  Table 1 shows the glitch 

interval given by (1) at different packet loss rates. 

 

 

Determining the acceptable packet loss is application-

specific, and, to a certain extent, subjective.  A broadcaster 

may be willing to tolerate more frequent glitches on a live 

feed from a reporter in the field, but require a stricter 

standard for a studio contribution link.  In any case, the 

acceptable packet loss can always be derived from the 

desired glitch interval using the method described above. 

PROTOCOL REVIEW 

I. SMPTE-2022 FEC 

The SMPTE-2022 FEC protocol was designed to correct 

occasional packet loss.  Its basic features are: 

 The actual audio/video transfer uses RTP. 

 The protocol adds parity (XOR) FEC packets to 

the stream to handle loss. 

 A FEC packet protects a group of audio/video 

packets.  If there is a single packet loss in this 

group, the lost packet can be rebuilt from the 

received packets and the FEC packet. 

 For the purposes of FEC computation, the 

transmitted audio/video packets are arranged in a 

matrix of C columns and R rows.  FEC packets are 

computed per column.  An optional second FEC 

flow may be computed per row. 

 The matrix arrangement enables the protocol to 

correct burst losses of up to C consecutive packets 

in every group of R×C packets, with an overhead 

of 1/R. 

 The use of optional row FEC packets enables the 

protocol to correct single packet losses on each 

row with an overhead of 1/C. 

 The FEC packets for a given matrix are transmitted 

during the next matrix.  This makes the latency of 

this protocol equal to the transmission time of 2RC 

packets. 

 The protocol is strictly unidirectional. There is no 

communication from the receiver(s) back to the 

sender, so it is well suited for one-to-many 

applications. 

 SMPTE-2022 [3] limits R and C to 20 and R×C to 

100. 

 

The latency and overhead of this protocol depend on 

the matrix size and the bit rate.  Table 2 shows a few 

common operating points. 

 

 

II. ARQ (Selective Retransmission) 

ARQ stands for Automatic Repeat reQuest (or Automatic 

Repeat Query) and is the generic name for a class of 

retransmission strategies in face of packet loss.  The most 

useful technique for video transmission is Selective 

Retransmission, where the receiver only sends Negative 

Acknowledgements (NACK) if packet loss is detected. The 

sender will then retransmit only the requested packets.  This 

is illustrated in Figure 1. 

 

 

Dropping one packet in Produces a glitch every 

1,000 2.6 seconds 

10,000 26 seconds 

100,000 4 minutes 23 seconds 

1,000,000 44 minutes 

10,000,000 7 hours 19 minutes 
 

TABLE 1: GLITCH INTERVAL AT 4 MB/S 

C R Recovery 

pkts/block 

Overhead Latency 

2Mb/s 

Latency 

10Mb/s 

5 5 5/25 20% 263 ms 53 ms 

10 5 10/50 20% 526 ms 105 ms 

20 5 20/100 20% 1052 ms 211 ms 

10 10 10/100 10% 1052 ms 211 ms 
 

TABLE 2: SAMPLE SMPTE-2022 OPERATING POINTS 

Sender

Internet

Receiver

Network

Round-trip

Delay

Transmitted 

packets are 

saved for 

possible 

retransmission

 
 

FIGURE 1: ARQ ILLUSTRATION 



As indicated in Figure 1, the latency requirement for 

this protocol is at least one round-trip delay.  If multiple 

round-trip delays are allowed, a dropped packet can be 

retried multiple times (e.g., when both the packet and its 

retransmission are dropped). 

There are a number of proprietary and incompatible 

ARQ implementations available in the market today.  

However, for the purposes of this paper, we will consider 

the variant defined in RFC 4585 [7]: 

 The actual audio/video transfer uses RTP, in the 

same fashion as SMPTE-2022 [4]. 

 Retransmissions are requested using the Generic 

NACK packet from RFC 4585 [7]. 

 A given packet may be requested multiple times. 

 

The overhead of the ARQ implementation consists of 

the retransmitted packets, and thus is a function of the 

packet loss.  In our overhead computations later in this 

paper, we disregard the NACK packets since they are 

typically very small, and flow in the opposite direction as 

the audio/video traffic. 

STATISTICAL ANALYSIS OF THE PROTOCOLS 

In this section, we provide a statistical analysis of the 

protocols. We assume that the packet loss process is an 

independent and identically distributed process where each 

packet is lost with probability p and received with 

probability (1 - p).  In most real networks, the packet loss 

process is more complex than this (since packets are usually 

dropped in bursts due to congestion), but this simplified 

model allows us to derive useful results.  

In this analysis, we derive results for the following 

variables, as a function of the packet loss probability p: 

pc: uncorrected packet loss (after application of the 

protocol) 

H: protocol overhead - amount of extra data transmitted to 

achieve correction, as a fraction of the total transmitted 

data 

I. ARQ Analysis 

In ARQ, a packet will remain lost if all of its 

retransmissions from the sender are also lost [6].  If we 

denote the number of allowed retransmissions by R, the 

uncorrected packet loss probability is given by (2), since we 

assume an i.i.d. process. 
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The overhead is composed simply by summing the 

retransmissions and is given by (3). 
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II. SMPTE-2022 FEC Analysis  

In SMPTE-2022 FEC, a group of packets is protected by 

one FEC packet.  If there are two or more losses in that 

group of packets, then correction is not possible. Finding the 

uncorrected packet loss in such a case is simply a matter of 

calculating the probability of such an event. 

In the following discussion, we will use: 

N: number of rows in the FEC matrix 

M: number of columns in the FEC matrix 

 

Column-Only FEC: 

In Column-Only mode, the FEC packet protects N data 

packets, provided there is only one loss in the group.  

Therefore, the uncorrected packet loss is given by (4), 

which is the probability of two or more losses in the group. 
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Since there is one packet added for each group of N 

packets, the overhead is simply1: 
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Row and Column FEC: 

In order to compute the uncorrected loss for the row and 

column mode, we divide the correction process into two 

parts: first, we apply row FEC, and recover whatever 

packets are possible.  Then, we apply column FEC to the 

resulting stream.  This is how most existing systems 

operate, because the row FEC packet comes immediately 

after the block being protected, while the column FEC 

packets come after the matrix is transmitted.  In theory, 

depending on the loss pattern, it may be possible to recover 

additional packets by iteratively applying row and column 

FEC multiple times.  However, such a method is not 

required by SMPTE-2022 and we believe that the 

improvement is negligible, so it is not included in our 

model. 

In order to find the uncorrected packet loss, we simply 

apply (4) twice, first for the row FEC, and then for the 

column FEC.  For a matrix with M columns, the 

intermediate uncorrected loss probability after row FEC is 

applied is given by (6). 
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The resulting stream is then fed to the column FEC 

stage, with an incoming packet loss probability of pM.  The 

final uncorrected loss probability is then given by (7), with 

pM given by (6). 

 

                                                           
1 In reality, SMPTE-2022 FEC packers are slightly larger than the data 

packets, but the difference is negligible and (5) provides a good 
approximation of the actual overhead. 
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In this case, M column FEC packets and N row FEC packets 

are added to each M×N matrix, so the overhead is: 
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III. Comparison Plots 

Plotting the uncorrected packet loss pc as a function of the 

input loss probability p is a good way to compare the 

protocols.  For a given value of p, the protocol exhibiting 

the lower pc has better performance. 

Figure 2 shows a comparison plot between ARQ with 

1, 2 and 4 retries (blue lines) versus column-only FEC with 

5, 10 and 20 rows (yellow lines).  It shows that ARQ 

outperforms column-only FEC for all settings, and that there 

is a significant improvement in ARQ performance as more 

retries are allowed. 

 

 

Figure 3 shows a comparison plot between ARQ with 

1, 2 and 4 retries versus row and column FEC with 5×5, 

10×10, and 20×5 matrices.  In this case, for some operating 

points at low loss rates, FEC can outperform ARQ with 1 or 

2 retries.  However, at 4 retries ARQ is still superior to 

these FEC configurations. 

 

 

Finally, the protocol overhead is presented in Figure 4.  

The SMPTE-2022 FEC overhead is constant and 

independent of the packet loss (since FEC packets are 

always transmitted regardless of loss).  ARQ overhead will 

increase with packet loss, but it is lower than FEC overhead 

until the loss is about 10%.  As we will show in the next 

section, this is past the useful operating point of a FEC 

system. 

 

SIMULATOR TESTS 

In order to evaluate the protocols in a lab environment, we 

developed a simple network simulator to create a controlled 

amount of packet loss. This section describes the simulator 

and the tests performed with it. 

I. Description of the Network Simulator 

As indicated in Figure 5, the network simulator is simply a 

software application running on a standard computer.  The 

simulator receives packets from the encoder and resends 

them to the decoder, after imposing a certain amount of 

packet loss.  At the output of the decoder, there is an actual 

video monitor connected so the resulting video quality can 

be subjectively assessed. 

 

 

The features of the network simulator developed for 

this testing are: 

 The simulator will receive packets from the 

encoder and retransmit them to the decoder.  It is 

aware of SMPTE-2022 packets, and will 

automatically forward them to the decoder if 

present. 

 The simulator will also forward RTCP packets 

from the decoder to the encoder.  This is necessary 

 
 

FIGURE 2: ARQ VERSUS SMPTE-2022 COLUMN ONLY 

 
 

FIGURE 3: ARQ VERSUS SMPTE-2022 ROW AND COLUMN 

 
 

FIGURE 4: PROTOCOL OVERHEAD 
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FIGURE 5: NETWORK SIMULATOR TEST ENVIRONMENT 



for relaying the RFC 4585 NACK packets in ARQ 

tests. 

 When the simulator decides to create packet loss, it 

will drop one or more consecutive packets from the 

encoder to the decoder.  If the encoder is operating 

in SMPTE-2022 mode, FEC packets may also be 

dropped; if the encoder is operating in ARQ mode, 

retransmissions may also be dropped. 

 The number of consecutive packets to be dropped 

is determined as follows: 

o The simulator is configured with a 

minimum burst loss, denoted by Lmin, and 

a maximum burst loss, denoted by Lmax, 

with 1 ≤ Lmin ≤ Lmax ≤ 30. 

o An individual loss drops a random 

number of packets, uniformly distributed 

between Lmin and Lmax.  Therefore, the 

average packet loss burst is (Lmin+Lmax)/2. 

 The actual loss events are generated at random.  

The simulator is configured with an overall packet 

loss target, expressed as a percentage of the 

packets being forwarded.  If we denote the desired 

packet loss probability by p, the loss event 

probability used by the simulator is given by (9). 
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The simulator was implemented as Windows program 

on a standard computer. 

II. Test Methodology and Results 

Our test methodology was: 

 Establish an end-to-end real-time flow from 

encoder to decoder through the simulator using the 

protocol under test. 

 Configure the simulator for a specific burst loss 

setting. 

 Increase the packet loss rate until, in our subjective 

assessment, the video was no longer “watchable”.  

Our definition of no longer “watchable” was the 

occurrence of noticeable glitches every few 

seconds. 

 Record this packet loss rate. 

 

Clearly, that the numerical results for this test will be 

highly dependent on the subjective definition of 

“watchable”, as different viewers will have different 

standards.  However, if all the tests are performed by the 

same viewer, the relative strengths of the two protocols can 

be assessed.  In other words, the absolute numerical results 

will be viewer-dependent, but useful information can be 

derived from their relative values.   

The tests were performed under the following 

conditions: 

 Compression type: H.264 High Profile 

 Input video resolution: 1920x1080i 59.94 

 Elementary video bit rate: 6 Mb/s 

 Audio: MPEG-1 Layer II, stereo, 128 kb/s 

 Container: transport stream at 6.877 Mb/s 

 

The protocol parameters were: 

 ARQ: up to 4 retries per packet allowed 

 SMPTE-2022: 20×5 matrix, row and column FEC 

 

For this test, we set Lmin = 1 for all trials, and set Lmax to 

different values between 1 and 30. 

 

The test results are displayed in Figure 6, where we plot 

the packet loss at which the video became “not watchable” 

as a function of Lmax.  As expected, ARQ produces 

significantly better results than SMPTE-2022 FEC.  The 

latter breaks down as soon as the packet loss rate goes over 

about 3%.  ARQ, on the other hand, can reliably operate in 

the 20% packet loss range, and does better with larger (but 

less-frequent) losses. 

 

INTERNET TESTS 

We conducted one actual field test over the Internet, 

between two Cobalt Digital facilities.  For the tests, we used 

the normal Internet connections for each of the facilities.  

These links were also carrying the normal business Internet 

traffic for each facility.  The test characteristics were: 

 Endpoints: Santa Clara, CA, and Champaign, IL. 

 ISP (both sides): Comcast 

 Network round trip time: 75 milliseconds 

 Number of hops: 12 

 Target bit rate: 3 Mb/s 

 

The tests were performed with actual audio/video data 

using the same types of encoder/decoder as the simulator 

test. 

I. Initial Link Characterization 

The first step was to characterize the link without any 

packet loss recovery protocol. The results are summarized 

in Table 3. 

 
 

FIGURE 6: SIMULATOR TEST RESULTS 



 

 

The Table 3 results indicate what appears to be an 

excellent Internet link, with only a 0.031% packet loss.  

However, the longest, glitch-free interval for this link was 

16 minutes in a 25-hour period. On average, there was a 

glitch every 37 seconds. The raw performance of this link 

is, by far, unsuitable for a broadcast application, even 

though by Internet standards it is a very good link. 

It should be also noted that the characteristics of a 

specific Internet link will change based on time of day and 

day of the week.  What is presented here is simply an 

average of one weekday. 

II. SMPTE-2022 Test Results 

The SMPTE-2022 FEC test was performed with a 20×5 

matrix, with both column and row FEC.  Under these 

conditions, the protocol can recover a burst loss of up to 20 

packets every 100-packet block, with an overhead of 25%.  

The test results are summarized in Table 4. 

 

 

III. ARQ Test Results 

The ARQ test was performed with a latency setting of 4 

times the round-trip delay, thus allowing for each dropped 

packet to be retried up to 4 times.  The test results are 

summarized in Table 5. 

 

 

IV. Discussion 

As predicted by both the analysis and the simulator test, 

ARQ is far superior to SMPTE-2022 FEC concerning 

packet recovery capabilities, and this is achieved with a 

much lower overhead.  This is not a surprise, since SMPTE-

2022 was not specifically designed to provide error-free 

operation over the Internet, but rather as an additional 

reliability layer for dedicated links (to recover from 

occasional packet losses).  However, until the RIST group 

in the Video Services Forum completes its protocol work, it 

is the only low-latency IP transport that is a standard. 

In the tests shown here, ARQ latency is also lower than 

that of SMPTE-2022, but this is more an artifact of the 

relatively low bit rates used, coupled with the fact that the 

round-trip delay in the test network was not very high. 

SMPTE-2022 latency is independent of the network and is 

inversely proportional to the stream rate, while ARQ latency 

will be a function of the network latency.  Which method 

has lower latency will be highly dependent on the 

environment. 

CONCLUSIONS 

Broadcasters can use the Internet today as a low-cost 

contribution link for some applications.  The questions to be 

asked are: 

1. Can the application accept occasional glitches, at 

the rate of one every few hours? 

2. Can the application accept a transport latency on 

the order of several hundred milliseconds? 

 

If the answer to both questions is yes, then indeed the 

application is a good candidate for transport over the 

Internet, and the advantage is a lower operational cost when 

compared to dedicated IP links.  As shown in this paper, the 

protocols exist to support this application.  SMPTE-2022 

can potentially be used if the links are of excellent quality 

and overhead is not an issue. Alternatively, one of the ARQ 

variants can be used for a wider variety of links, still with 

acceptable latency.  At the time of this writing, the ARQ 

Test Duration 25 hours 42 minutes 

Total Packets 26,381,219 

Dropped Packets 8,187 

Packet Loss 0.031% 

Packet Loss Instances 2,464 

Average Packet Drop 3.3 packets 

Max Packet Drop 169 packets 

Average Glitch Interval 37.5 seconds 

Max Error Free Interval 16 min 17 sec 

 
TABLE 3: INITIAL LINK CHARACTERIZATION 

Test Duration 65 hours 

Test Start Date 05/19/17, 3:50PM 

Received Packets 67,185,790 

Lost Packets 10.463 

Recovered Packets 8,670 

Unrecovered Packets 1,793 

Network Packet Loss 0.0158% 

Corrected Packet Loss 0.0027% 

Correction Ratio 83% 

Bandwidth Overhead 25% 

Network Glitch Interval 1 minute 13 seconds 

Corrected Glitch Interval 7 minutes 12 seconds 

Protocol Latency 702 milliseconds 
 

TABLE 4: SMPTE-2022 FEC RESULTS – INTERNET LINK 

Test Duration 169 hours 

Test Start Date 05/24/17, 12:30PM 

Received Packets 173,490,315 

Lost Packets 44,606 

Recovered Packets 44,471 

Unrecovered Packets 135 

Network Packet Loss 0.0257% 

Corrected Packet Loss 0.000078% 

Correction Ratio 99.7% 

Bandwidth Overhead 0.027% 

Network Glitch Interval 46 seconds 

Corrected Glitch Interval 4 hours 7 minutes 

Protocol Latency 400 milliseconds 
 

TABLE 5: ARQ RESULTS – INTERNET LINK 



implementations in the market are not interoperable, but a 

standard is being developed [8]. 

For applications where latency is not a concern, a 

transport such as HLS or DASH can be considered as well.  

These will have several seconds of latency, but the protocol 

is a standard nonetheless and the packet loss performance 

will be very good for most networks. 

Two aspects not covered on this paper that are 

important on an actual deployment are: 

 Content protection and security: depending on the 

content, it may be necessary to use end-to-end 

encryption. 

 Firewall integration: encoders and decoders will be 

behind firewalls, which need to be opened enough 

for the protocol to operate, or, alternatively, a VPN 

must be provided end-to-end. 
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