
A Study of Protocols for Low-Latency Video Transport
over the Internet

Ciro A. Noronha, Ph.D.

Cobalt Digital
Santa Clara, CA

ciro.noronha@cobaltdigital.com

Juliana W. Noronha
University of California, Davis

Davis, CA
jwnoronha@ucdavis.edu

Abstract - The speed and quality of the Internet links

available today have made it possible to employ them as

broadcast contribution links. However, Internet links

experience packet loss. The protocols that deal with this

loss represent a tradeoff between latency and reliability.

This paper investigates two common packet loss recovery

protocols: Selective Retransmission (also known as ARQ)

and SMPTE-2022 FEC. We start with a statistical

modeling analysis of these two protocols. Next, using an

actual encoder/decoder pair, we present a few lab

measurement results using a network simulator specifically

designed for this test, as well as results from an Internet link

between locations in California and Illinois. We conclude

with guidelines for broadcasters who are considering the

Internet as a low-cost contribution link, but are concerned

with latency and reliability. At the time of this writing, the

Video Services Forum (VSF) has started a working group

called RIST (Reliable Internet Stream Transport)

specifically to standardize such a protocol.

INTRODUCTION

The speed and reliability of the Internet has steadily

increased over the last few years. Over-The-Top (OTT)

services are routinely used by millions to watch high-quality

content. It is natural for broadcasters to consider using the

Internet as a cost-effective means to transmit contribution-

grade video between locations, rather than purchasing

expensive dedicated links. Studios and TV stations all have

Internet access already, so why not use that for contribution

as well?

The issue with this approach is that Internet delivery is

best-effort (since IP is best-effort), and one cannot set end-

to-end priorities. Thus, there will be occasional packet

losses, primarily due to instantaneous congestion. Since

what is being transmitted is compressed audio/video, effects

of uncorrected packet loss are quite noticeable.

Transport protocols such as TCP can deal with packet

loss and provide reliable delivery. However, there is a

fundamental tradeoff between reliable delivery and latency.

Given enough time, a well-designed protocol can get every

packet delivered. OTT applications, for instance, use HLS

[1] or DASH [2] for delivery; these protocols may impose a

latency in the order of tens of seconds. For stored content,

this is acceptable; it is better to have reliable delivery than

low latency. However, for many broadcast applications,

latency needs to be low, and the protocol may need to “give

up” on packets that cannot be recovered in a given window

of time.

To date, the only standard protocol that satisfies this

latency requirement while providing some packet loss

recovery is SMPTE-2022 FEC [3] [4]. This protocol was

not designed to be used on the Internet; its primary purpose

was to recover from occasional packet loss on well-

managed links. However, due to the lack of options and the

quality improvements on Internet links, a number of

broadcasters have used SMPTE-2022 FEC with some

degree of success. However, in general, something better is

required.

There are a number of proprietary solutions in the

market today that use variants of the well-known Selective

Retransmission technique. These solutions are usually

denoted by ARQ (Automatic Repeat reQuest), described in

many networking textbooks [5]. The ARQ technique is

known to work significantly better than SMPTE-2022 FEC.

In this paper, we provide a comparison between

SMPTE-2022 FEC and one standards-based implementation

of ARQ, with the objective of providing low-latency

transport over the Internet. The comparison includes a

statistical analysis, a lab test with a custom network

simulator, and one actual test over the Internet.

ACCEPTABLE PACKET LOSS

Even with the advances in the capacity and reliability of the

Internet links, they are not yet fast enough to support raw

video transmission in an economical way. Therefore,

compression is needed, and the better job the compression

does, the more important the resulting bits become, since

the amount of information they contain is higher. In other

words, all the bits are important, and they must be delivered

with high reliability. Given that packet loss is unavoidable

if there is a latency constraint, it is important to determine

what an acceptable level of packet loss is.

A simple way to determine the acceptable packet loss is

to assume that every packet loss causes a glitch [6]. This is

a reasonable assumption with compressed streams because

fundamentally, compression works by removing the

redundancy, and thus every bit is important. In addition, the

effects of a loss may persist for a while, since decoding a

video frame may depend on data from previous video

frames. In reality, a small fraction of the losses may not be

noticeable or may be concealed by the decoder, but the

more conservative approach is to assume that every loss is a

noticeable glitch.

Based on this approach, it is straightforward to derive

the glitch interval from the data rate and the packet size.

Defining:

R: stream rate in bits/second

B: packet payload size in bytes

p: packet loss probability

G: glitch interval in seconds

The glitch interval is given by (1):

Rp

B
G

8
 (1)

As an example, let us assume a 4 Mb/s video stream,

with the usual 1316-byte payload. Table 1 shows the glitch

interval given by (1) at different packet loss rates.

Determining the acceptable packet loss is application-

specific, and, to a certain extent, subjective. A broadcaster

may be willing to tolerate more frequent glitches on a live

feed from a reporter in the field, but require a stricter

standard for a studio contribution link. In any case, the

acceptable packet loss can always be derived from the

desired glitch interval using the method described above.

PROTOCOL REVIEW

I. SMPTE-2022 FEC

The SMPTE-2022 FEC protocol was designed to correct

occasional packet loss. Its basic features are:

 The actual audio/video transfer uses RTP.

 The protocol adds parity (XOR) FEC packets to

the stream to handle loss.

 A FEC packet protects a group of audio/video

packets. If there is a single packet loss in this

group, the lost packet can be rebuilt from the

received packets and the FEC packet.

 For the purposes of FEC computation, the

transmitted audio/video packets are arranged in a

matrix of C columns and R rows. FEC packets are

computed per column. An optional second FEC

flow may be computed per row.

 The matrix arrangement enables the protocol to

correct burst losses of up to C consecutive packets

in every group of R×C packets, with an overhead

of 1/R.

 The use of optional row FEC packets enables the

protocol to correct single packet losses on each

row with an overhead of 1/C.

 The FEC packets for a given matrix are transmitted

during the next matrix. This makes the latency of

this protocol equal to the transmission time of 2RC

packets.

 The protocol is strictly unidirectional. There is no

communication from the receiver(s) back to the

sender, so it is well suited for one-to-many

applications.

 SMPTE-2022 [3] limits R and C to 20 and R×C to

100.

The latency and overhead of this protocol depend on

the matrix size and the bit rate. Table 2 shows a few

common operating points.

II. ARQ (Selective Retransmission)

ARQ stands for Automatic Repeat reQuest (or Automatic

Repeat Query) and is the generic name for a class of

retransmission strategies in face of packet loss. The most

useful technique for video transmission is Selective

Retransmission, where the receiver only sends Negative

Acknowledgements (NACK) if packet loss is detected. The

sender will then retransmit only the requested packets. This

is illustrated in Figure 1.

Dropping one packet in Produces a glitch every

1,000 2.6 seconds

10,000 26 seconds

100,000 4 minutes 23 seconds

1,000,000 44 minutes

10,000,000 7 hours 19 minutes

TABLE 1: GLITCH INTERVAL AT 4 MB/S

C R Recovery

pkts/block

Overhead Latency

2Mb/s

Latency

10Mb/s

5 5 5/25 20% 263 ms 53 ms

10 5 10/50 20% 526 ms 105 ms

20 5 20/100 20% 1052 ms 211 ms

10 10 10/100 10% 1052 ms 211 ms

TABLE 2: SAMPLE SMPTE-2022 OPERATING POINTS

Sender

Internet

Receiver

Network

Round-trip

Delay

Transmitted

packets are

saved for

possible

retransmission

FIGURE 1: ARQ ILLUSTRATION

As indicated in Figure 1, the latency requirement for

this protocol is at least one round-trip delay. If multiple

round-trip delays are allowed, a dropped packet can be

retried multiple times (e.g., when both the packet and its

retransmission are dropped).

There are a number of proprietary and incompatible

ARQ implementations available in the market today.

However, for the purposes of this paper, we will consider

the variant defined in RFC 4585 [7]:

 The actual audio/video transfer uses RTP, in the

same fashion as SMPTE-2022 [4].

 Retransmissions are requested using the Generic

NACK packet from RFC 4585 [7].

 A given packet may be requested multiple times.

The overhead of the ARQ implementation consists of

the retransmitted packets, and thus is a function of the

packet loss. In our overhead computations later in this

paper, we disregard the NACK packets since they are

typically very small, and flow in the opposite direction as

the audio/video traffic.

STATISTICAL ANALYSIS OF THE PROTOCOLS

In this section, we provide a statistical analysis of the

protocols. We assume that the packet loss process is an

independent and identically distributed process where each

packet is lost with probability p and received with

probability (1 - p). In most real networks, the packet loss

process is more complex than this (since packets are usually

dropped in bursts due to congestion), but this simplified

model allows us to derive useful results.

In this analysis, we derive results for the following

variables, as a function of the packet loss probability p:

pc: uncorrected packet loss (after application of the

protocol)

H: protocol overhead - amount of extra data transmitted to

achieve correction, as a fraction of the total transmitted

data

I. ARQ Analysis

In ARQ, a packet will remain lost if all of its

retransmissions from the sender are also lost [6]. If we

denote the number of allowed retransmissions by R, the

uncorrected packet loss probability is given by (2), since we

assume an i.i.d. process.

1 R

c pp (2)

The overhead is composed simply by summing the

retransmissions and is given by (3).

R

i

ipH
1

 (3)

II. SMPTE-2022 FEC Analysis

In SMPTE-2022 FEC, a group of packets is protected by

one FEC packet. If there are two or more losses in that

group of packets, then correction is not possible. Finding the

uncorrected packet loss in such a case is simply a matter of

calculating the probability of such an event.

In the following discussion, we will use:

N: number of rows in the FEC matrix

M: number of columns in the FEC matrix

Column-Only FEC:

In Column-Only mode, the FEC packet protects N data

packets, provided there is only one loss in the group.

Therefore, the uncorrected packet loss is given by (4),

which is the probability of two or more losses in the group.

NN

c pNppp)1()1(1 1
 (4)

Since there is one packet added for each group of N

packets, the overhead is simply1:

N

H
1

 (5)

Row and Column FEC:

In order to compute the uncorrected loss for the row and

column mode, we divide the correction process into two

parts: first, we apply row FEC, and recover whatever

packets are possible. Then, we apply column FEC to the

resulting stream. This is how most existing systems

operate, because the row FEC packet comes immediately

after the block being protected, while the column FEC

packets come after the matrix is transmitted. In theory,

depending on the loss pattern, it may be possible to recover

additional packets by iteratively applying row and column

FEC multiple times. However, such a method is not

required by SMPTE-2022 and we believe that the

improvement is negligible, so it is not included in our

model.

In order to find the uncorrected packet loss, we simply

apply (4) twice, first for the row FEC, and then for the

column FEC. For a matrix with M columns, the

intermediate uncorrected loss probability after row FEC is

applied is given by (6).

MM

M pMppp)1()1(1 1
 (6)

The resulting stream is then fed to the column FEC

stage, with an incoming packet loss probability of pM. The

final uncorrected loss probability is then given by (7), with

pM given by (6).

1 In reality, SMPTE-2022 FEC packers are slightly larger than the data

packets, but the difference is negligible and (5) provides a good
approximation of the actual overhead.

N

MM

N

Mc pNppp)1()1(1 1
 (7)

In this case, M column FEC packets and N row FEC packets

are added to each M×N matrix, so the overhead is:

MN

NM
H

 (8)

III. Comparison Plots

Plotting the uncorrected packet loss pc as a function of the

input loss probability p is a good way to compare the

protocols. For a given value of p, the protocol exhibiting

the lower pc has better performance.

Figure 2 shows a comparison plot between ARQ with

1, 2 and 4 retries (blue lines) versus column-only FEC with

5, 10 and 20 rows (yellow lines). It shows that ARQ

outperforms column-only FEC for all settings, and that there

is a significant improvement in ARQ performance as more

retries are allowed.

Figure 3 shows a comparison plot between ARQ with

1, 2 and 4 retries versus row and column FEC with 5×5,

10×10, and 20×5 matrices. In this case, for some operating

points at low loss rates, FEC can outperform ARQ with 1 or

2 retries. However, at 4 retries ARQ is still superior to

these FEC configurations.

Finally, the protocol overhead is presented in Figure 4.

The SMPTE-2022 FEC overhead is constant and

independent of the packet loss (since FEC packets are

always transmitted regardless of loss). ARQ overhead will

increase with packet loss, but it is lower than FEC overhead

until the loss is about 10%. As we will show in the next

section, this is past the useful operating point of a FEC

system.

SIMULATOR TESTS

In order to evaluate the protocols in a lab environment, we

developed a simple network simulator to create a controlled

amount of packet loss. This section describes the simulator

and the tests performed with it.

I. Description of the Network Simulator

As indicated in Figure 5, the network simulator is simply a

software application running on a standard computer. The

simulator receives packets from the encoder and resends

them to the decoder, after imposing a certain amount of

packet loss. At the output of the decoder, there is an actual

video monitor connected so the resulting video quality can

be subjectively assessed.

The features of the network simulator developed for

this testing are:

 The simulator will receive packets from the

encoder and retransmit them to the decoder. It is

aware of SMPTE-2022 packets, and will

automatically forward them to the decoder if

present.

 The simulator will also forward RTCP packets

from the decoder to the encoder. This is necessary

FIGURE 2: ARQ VERSUS SMPTE-2022 COLUMN ONLY

FIGURE 3: ARQ VERSUS SMPTE-2022 ROW AND COLUMN

FIGURE 4: PROTOCOL OVERHEAD

Encoder Decoder

Network

Simulator

FIGURE 5: NETWORK SIMULATOR TEST ENVIRONMENT

for relaying the RFC 4585 NACK packets in ARQ

tests.

 When the simulator decides to create packet loss, it

will drop one or more consecutive packets from the

encoder to the decoder. If the encoder is operating

in SMPTE-2022 mode, FEC packets may also be

dropped; if the encoder is operating in ARQ mode,

retransmissions may also be dropped.

 The number of consecutive packets to be dropped

is determined as follows:

o The simulator is configured with a

minimum burst loss, denoted by Lmin, and

a maximum burst loss, denoted by Lmax,

with 1 ≤ Lmin ≤ Lmax ≤ 30.

o An individual loss drops a random

number of packets, uniformly distributed

between Lmin and Lmax. Therefore, the

average packet loss burst is (Lmin+Lmax)/2.

 The actual loss events are generated at random.

The simulator is configured with an overall packet

loss target, expressed as a percentage of the

packets being forwarded. If we denote the desired

packet loss probability by p, the loss event

probability used by the simulator is given by (9).

maxmin

2

LL

p
PLoss

 (9)

The simulator was implemented as Windows program

on a standard computer.

II. Test Methodology and Results

Our test methodology was:

 Establish an end-to-end real-time flow from

encoder to decoder through the simulator using the

protocol under test.

 Configure the simulator for a specific burst loss

setting.

 Increase the packet loss rate until, in our subjective

assessment, the video was no longer “watchable”.

Our definition of no longer “watchable” was the

occurrence of noticeable glitches every few

seconds.

 Record this packet loss rate.

Clearly, that the numerical results for this test will be

highly dependent on the subjective definition of

“watchable”, as different viewers will have different

standards. However, if all the tests are performed by the

same viewer, the relative strengths of the two protocols can

be assessed. In other words, the absolute numerical results

will be viewer-dependent, but useful information can be

derived from their relative values.

The tests were performed under the following

conditions:

 Compression type: H.264 High Profile

 Input video resolution: 1920x1080i 59.94

 Elementary video bit rate: 6 Mb/s

 Audio: MPEG-1 Layer II, stereo, 128 kb/s

 Container: transport stream at 6.877 Mb/s

The protocol parameters were:

 ARQ: up to 4 retries per packet allowed

 SMPTE-2022: 20×5 matrix, row and column FEC

For this test, we set Lmin = 1 for all trials, and set Lmax to

different values between 1 and 30.

The test results are displayed in Figure 6, where we plot

the packet loss at which the video became “not watchable”

as a function of Lmax. As expected, ARQ produces

significantly better results than SMPTE-2022 FEC. The

latter breaks down as soon as the packet loss rate goes over

about 3%. ARQ, on the other hand, can reliably operate in

the 20% packet loss range, and does better with larger (but

less-frequent) losses.

INTERNET TESTS

We conducted one actual field test over the Internet,

between two Cobalt Digital facilities. For the tests, we used

the normal Internet connections for each of the facilities.

These links were also carrying the normal business Internet

traffic for each facility. The test characteristics were:

 Endpoints: Santa Clara, CA, and Champaign, IL.

 ISP (both sides): Comcast

 Network round trip time: 75 milliseconds

 Number of hops: 12

 Target bit rate: 3 Mb/s

The tests were performed with actual audio/video data

using the same types of encoder/decoder as the simulator

test.

I. Initial Link Characterization

The first step was to characterize the link without any

packet loss recovery protocol. The results are summarized

in Table 3.

FIGURE 6: SIMULATOR TEST RESULTS

The Table 3 results indicate what appears to be an

excellent Internet link, with only a 0.031% packet loss.

However, the longest, glitch-free interval for this link was

16 minutes in a 25-hour period. On average, there was a

glitch every 37 seconds. The raw performance of this link

is, by far, unsuitable for a broadcast application, even

though by Internet standards it is a very good link.

It should be also noted that the characteristics of a

specific Internet link will change based on time of day and

day of the week. What is presented here is simply an

average of one weekday.

II. SMPTE-2022 Test Results

The SMPTE-2022 FEC test was performed with a 20×5

matrix, with both column and row FEC. Under these

conditions, the protocol can recover a burst loss of up to 20

packets every 100-packet block, with an overhead of 25%.

The test results are summarized in Table 4.

III. ARQ Test Results

The ARQ test was performed with a latency setting of 4

times the round-trip delay, thus allowing for each dropped

packet to be retried up to 4 times. The test results are

summarized in Table 5.

IV. Discussion

As predicted by both the analysis and the simulator test,

ARQ is far superior to SMPTE-2022 FEC concerning

packet recovery capabilities, and this is achieved with a

much lower overhead. This is not a surprise, since SMPTE-

2022 was not specifically designed to provide error-free

operation over the Internet, but rather as an additional

reliability layer for dedicated links (to recover from

occasional packet losses). However, until the RIST group

in the Video Services Forum completes its protocol work, it

is the only low-latency IP transport that is a standard.

In the tests shown here, ARQ latency is also lower than

that of SMPTE-2022, but this is more an artifact of the

relatively low bit rates used, coupled with the fact that the

round-trip delay in the test network was not very high.

SMPTE-2022 latency is independent of the network and is

inversely proportional to the stream rate, while ARQ latency

will be a function of the network latency. Which method

has lower latency will be highly dependent on the

environment.

CONCLUSIONS

Broadcasters can use the Internet today as a low-cost

contribution link for some applications. The questions to be

asked are:

1. Can the application accept occasional glitches, at

the rate of one every few hours?

2. Can the application accept a transport latency on

the order of several hundred milliseconds?

If the answer to both questions is yes, then indeed the

application is a good candidate for transport over the

Internet, and the advantage is a lower operational cost when

compared to dedicated IP links. As shown in this paper, the

protocols exist to support this application. SMPTE-2022

can potentially be used if the links are of excellent quality

and overhead is not an issue. Alternatively, one of the ARQ

variants can be used for a wider variety of links, still with

acceptable latency. At the time of this writing, the ARQ

Test Duration 25 hours 42 minutes

Total Packets 26,381,219

Dropped Packets 8,187

Packet Loss 0.031%

Packet Loss Instances 2,464

Average Packet Drop 3.3 packets

Max Packet Drop 169 packets

Average Glitch Interval 37.5 seconds

Max Error Free Interval 16 min 17 sec

TABLE 3: INITIAL LINK CHARACTERIZATION

Test Duration 65 hours

Test Start Date 05/19/17, 3:50PM

Received Packets 67,185,790

Lost Packets 10.463

Recovered Packets 8,670

Unrecovered Packets 1,793

Network Packet Loss 0.0158%

Corrected Packet Loss 0.0027%

Correction Ratio 83%

Bandwidth Overhead 25%

Network Glitch Interval 1 minute 13 seconds

Corrected Glitch Interval 7 minutes 12 seconds

Protocol Latency 702 milliseconds

TABLE 4: SMPTE-2022 FEC RESULTS – INTERNET LINK

Test Duration 169 hours

Test Start Date 05/24/17, 12:30PM

Received Packets 173,490,315

Lost Packets 44,606

Recovered Packets 44,471

Unrecovered Packets 135

Network Packet Loss 0.0257%

Corrected Packet Loss 0.000078%

Correction Ratio 99.7%

Bandwidth Overhead 0.027%

Network Glitch Interval 46 seconds

Corrected Glitch Interval 4 hours 7 minutes

Protocol Latency 400 milliseconds

TABLE 5: ARQ RESULTS – INTERNET LINK

implementations in the market are not interoperable, but a

standard is being developed [8].

For applications where latency is not a concern, a

transport such as HLS or DASH can be considered as well.

These will have several seconds of latency, but the protocol

is a standard nonetheless and the packet loss performance

will be very good for most networks.

Two aspects not covered on this paper that are

important on an actual deployment are:

 Content protection and security: depending on the

content, it may be necessary to use end-to-end

encryption.

 Firewall integration: encoders and decoders will be

behind firewalls, which need to be opened enough

for the protocol to operate, or, alternatively, a VPN

must be provided end-to-end.

REFERENCES

[1] Pantos, R., and May, W., “HTTP Live Streaming”, RFC 8216,

August 2017.

[2] ISO/IEC 23009-1, “Information Technology: Dynamic Adaptive

Streaming over HTTP (DASH)”, second edition, 2014-05-15

[3] SMPTE 2022-1-2007, “Forward Error Correction for Real-Time
Video/Audio Transport Over IP Networks”

[4] SMPTE 2022-2-2007, “Unidirectional Transport of Constant Bit Rate

MPEG-2 Transport Streams on IP Networks”

[5] Halsall, F., Data Communications, Computer Networks and Open

Systems, Fourth Edition, 1996, pp 169-170

[6] Noronha, C. and Jia, F., “Live Video Communication over Computer
Networks Using MPEG,” Combined Industry, Space and Earth

Science Data Compression Workshop, Snowbird, Utah, April 4, 1996

[7] Ott, J., Wenger, S., Sato, N., Burmeister, C., and Rey, J., “Extended
RTP Profile for Real-time Transport Control Protocol (RTCP)-Based

Feedback”, RFC 4585, July 2006

[8] Video Services Forum, “Reliable Internet Stream Transport "RIST"
Activity Group”, retrieved from

http://www.videoservicesforum.org/RIST.shtml

